
PROJECT LITHIUM
“Playmat”.

Design intent.

(Written in Sketch. The Dosis font is by the Dosis Project Authors, including Edgar 
Tolentino, Pablo Impallari, and Igino Marini. The Share Tech font family is by Carrois. All 
fonts used under the terms of the SIL Open Font License. Noetic Garden is a dream by 
millenomi. The content of this document covered by the Creative Commons 
Attribution-NonCommercial-ShareAlike 4.0 license: https://creativecommons.org/
licenses/by-nc-sa/4.0/deed.en.)

https://noetic.garden/



PROJECT LITHIUM is an application 
that allows people to play and design 
tabletop games, with a powerful focus 
on card games.



It should:
- … allow users to pick up and play a game with ease, with a user 

experience focus on ‘getting out of the way’. Each task along the way of a 

normal tabletop experience should:

- feel natural, 

- obey platform conventions, 

- be recognizable as the user switches contexts (say, from a desktop 

computer to a tablet or headset), and:

- where the experience of play cannot match physical components, to 

introduce as little friction as possible rather than trying to be 

skeumorphic.

- … have a built-in, ‘on-top’ design experience that moves from importing 

game components into designing them. It should:

- be progressively disclosed without feeling intrusive.

- recognize that these games have acts of authorship, such as 

deckbuilding, and ensure that the UI for these moments in the game allows 

for expression both as a player and as a game author.

- integrate into existing workflows without requiring onerous 

reupload or re-pairing steps.

- … strive for powerful immersion.

- in particular, it should target headsets as first-class 

experiences.



But:
- It should avoid physical accuracy except as a useful affordance.

- there are gestures and component placements that are literal, and 

gestures and component placements that are approximations of symbolic 

arrangements or intentions. This application should not confuse the former 

for the latter, and should focus on interpreting and producing clarity 

around the symbolic arrangements as much as possible.

- This means games of dexterity or precision may not be representable 

easily with this app. This is okay. This is a trade-off we are making to 

focus on the majority of card game experiences.

- It should not be a graphics design application.

- it should integrate with existing tools, including tools hosted on 

other machines, rather than replicate them.

- it should strive to understand and maintain design intent without 

friction, for example with powerful defaults that produce predictable 

component results from the output of a graphic export.

- It should avoid onerous pregame rituals:

- once a game has been prepared, it should not require installation 

for a remote user. Joining a game and obtaining the game setup should be 

synonymous.

- it should clearly provide for both whole-game authorship, and acts 

of player authorship (e.g. bringing your deck) for that game, without 

conflating them or making players go through more onerous design 

interfaces than strictly needed.



Technical forecast:
This application will be developed at least initially in Swift for Apple operating systems and platforms As a 
cost- and effort-containment measure, we are targeting only the following, by leveraging SwiftUI & 
RealityKit:

Primary
(Expected)

macOS,
visionOS,
iPadOS.

Secondary
(Possibly facing
the losing side of
trade-offs:)

iOS

Tertiary
(Explicitly not
sought on first
pass:)

Meta Quest
PC VR (Win32)

That said, part of the design effort will at least attempt to remove a hard dependency between behavior-
driving code and specifically SwiftUI. This may already be required if we find out that the optimal solution 
for visionOS support is to run that particular set of interactions entirely in RealityKit, but is a matter of 
policy anyway to not tie the code down specifically to a UI environment.

Tertiary platforms are not part of the initial target. The hope is to eventually, once done with acceptance on 
the above, be able to either build decoupled code with Swift toolchains for Windows and Android, or port 
the core behaviors to a different language (e.g., Rust or C++) that can be deployed to these platforms.


